
Model-Based Engineering for Laser Weapons Systems The Path Forward

Motivating *Effective* Systems Engg.

- 1960s-Present: Focus on getting the physics right
- Result: Large number (100s) of highly specialized Sim Tools
- *Result:* Organizational silos formed around particular physics
- *Result:* Highly inefficient, ineffective, and error-prone simulation workflows for the design of complex systems
- *Result:* Systems engineering left in the hands of the "experts", with little or no support from the software environments
- *Result:* Ad hoc simulation data management with little reuse of either the data or processes

• Result: 3x-5x schedule delays and cost overruns + *Failures*

Model-Based Engineering (MBE) identified by DDR&E as one of four "game-changing" technologies required to meet DoD needs for more rapid, targeted, and cost-effective systems development. Systems 2020 Final Report

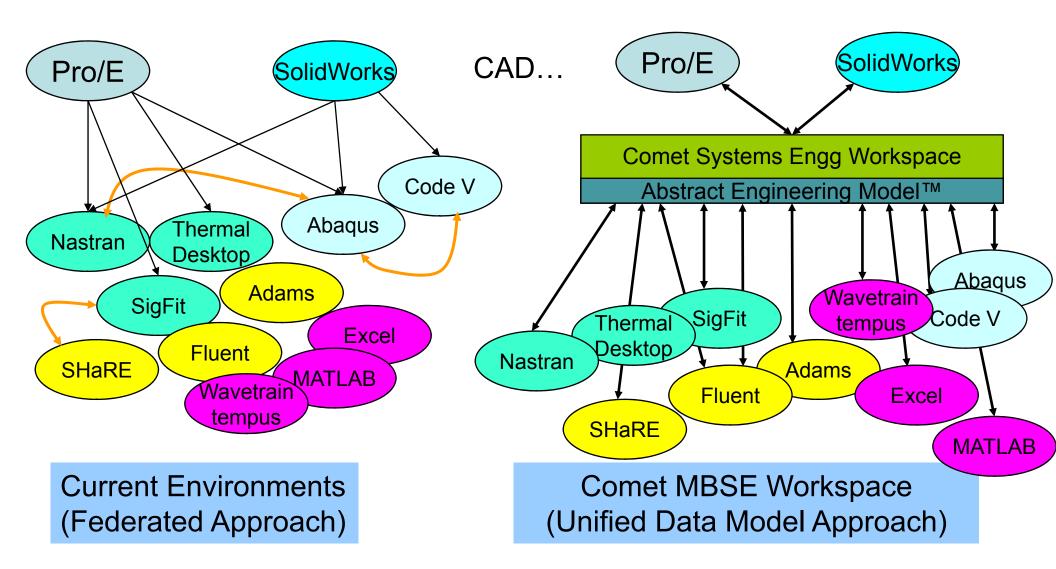
Solutions, Inc

Modeling Capabilities Required for Laser Weapons R&D

- General purpose wave optics simulation
 - WaveTrain, WaveProp, ACS, OSSIM, etc.
- Scaling codes
 - SHARE & SCALE, HELSEEM, HELCOMES
- Optical design codes: SigFit, Code V and Zemax
- Thermal and Structural finite element analysis codes
 Nastran, Abaqus, Ansys, Thermal Desktop
- General math tools such as Excel and MATLAB
- Multi-Physics/CFD

net Solutions, Inc.

- GASP, COMSOL, Areté
- Fluent, Star-CD, ...


In this "risk reduction experiment" funded by AFRL, we have integrated *WaveTrain* into *Comet*, a COTS MBE framework.

Why Comet?

- Comet: Process + Data, *not* Physics
- Comet is a tool-neutral, open environment for performing integrated modeling and simulation process automation
 - Capture and easily reuse engineering IP best practices using geometry- and tool-independent templates
 - Reduce manual re-work and errors
 - Ensure that all disciplines/tools work off the same, consistent data
 - Support collaboration across the multi-disciplinary project team
 - Provide easy-to-use decision-support tools
 - Perform more robust trade studies at any desired level of fidelity
 - Maintain an audit trail of project models & results

Federated versus Unified Approaches Integrating Tools & Data Across All Design Phases

"Intelligent" Templates & Abstract Models

(TON

Project Dashboard

Bimulation Templates

	Dashboard									
2	Constant	Value	Variable	Value	Requirement	Value	Metric		Value	
-	L13-L16:Mass Budget	1.0000 kg	- Contactor06	75.0000 W/m^2*K	L13-L16: Total Mass	1.0653 kg	- Extracted Tim	5 · · · · · · · · · · · · · · · · · · ·	Scalar (Containe	dEntity (
T			Contactor07	75.0000 W/m^2*K	E Structural:Lenses:L13:Max Displacement	4.964072e-03 mm	L13-L16: Tota	Mass	1.0653 kg	
K			- Contactor08	75.0000 W/m^2*K	Thermal:Temp:L13:Max	36.5390 degC	Structural:Len	ses:L13:Max Displacement	4.964072e-03 r	mm
*			- Contactor09	75.0000 W/m^2*K			Structural:Len	ses:L13:Max Von Mises Stress	7.429000e+06	Pa
*			- Contactor10	75.0000 W/m^2*K			Structural:Len	ses:L13:Min Displacement	1.462581e-03 r	mm
			- Contactor11	75.0000 W/m^2*K			Structural:Len	ses:L14:Max Displacement	3.058609e-03 r	mm
12			Heater_L13	1.4600 W			Structural:Len	ses:L14:Max Von Mises Stress	6.321000e+05	Pa
			Heater_L16	1.4600 W			Structural:Len	ses:L14:Min Displacement	2.374102e-03	mm
			Heater_Off	41.1000 degC			Structural:Len	ses:L15:Max Displacement	5.430060e-03 r	mm
			Heater_On	40.9000 degC			Structural:Len	ses:L15:Max Von Mises Stress	6.053000e+06	Pa
			InitialTemperature	20.0000 degC			Structural:Len	ses:L15:Min Displacement	3.013111e-03 r	mm
			Load:L13_PerPad	7.2000 lbf			Structural:Len	ses:L16:Max Displacement	4.915143e-03 r	mm
			Load:L14_PerPad	7.0000 lbf			Structural:Len	ses:L16:Max Von Mises Stress	4.952000e+06	Pa
			Load:L15_PerPad	3.2000 lbf			Structural:Len	ses:L16:Min Displacement	3.969294e-03 r	mm
			Load:L16_PerPad	9.9000 lbf			Thermal:IncTer	mp:L13:Max	scalar (FieldMaxir	mum (C
			OBA_Temperature_Bottom	14.0000 degC			Thermal:IncTer	mp:L14:Max	scalar (FieldMaxir	mum (C
			OBA_Temperature_Sides	13.0000 degC			Thermal:IncTer	mp:L15:Max	scalar (FieldMaxir	mum (C
	A		OBA_Temperature_Top	14.0000 degC			Thermal:IncTer	mp:L16:Max	scalar (FieldMaxir	mum (C
	Nastran	hermal Desktop HaRE		Wavetrain tempus dams Exc	Abaqus Code V el MATLAB	dn/dT Disturb Combine Disturbances	pance Optics	omponent) Lens-13 (CAD D) for thermal D) for structur optics with CC nent) with Wa s-13 (CAD)	al DE V)
			Composite Mesh		Fine Structures N Displacements	Alesh Surface Defore Disturbance	n	matic Des ormed Us Practices	Ŭ	

Comet External Adaptors Coverage

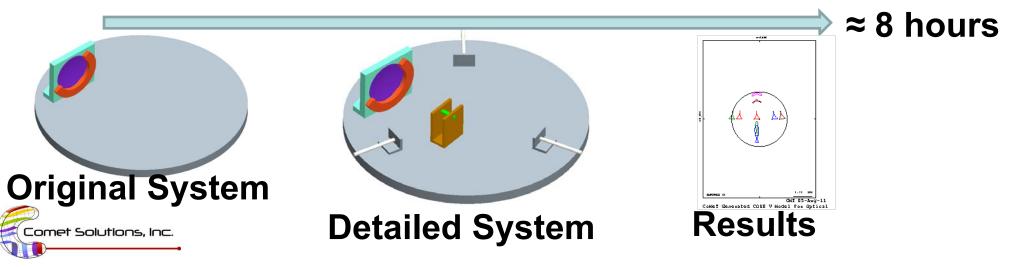
3-D CAD	Native Geometry	Pro/E (WF3, WF4)			
	Bi-Directionally	Solidworks (2009 SP3.0,2010 SP4.0)			
	Associative	NX (6.0)			
		SpaceClaim Engineer			
	Translated In	CATIA V4 (4.1.9 - 4.2.4)			
		CATIA V5 (R2-R19)			
		IGES (upto 5.3)			
		Autodesk Inventor (6-2009)			
		STEP (AP203, AP214)			
		MD Adams (2010)			
	Optics	CODE V (9.70, 9.80)			
		SigFit (2008R1, 2009R1)			
		WaveTrain/Tempus (under dev)			
	Structures	Abaqus/Standard (6.7-1, 6.10-1)			
		Ansys (10.0, 11.0)			
		MD Nastran (2010.1)			
		NX Nastran			
	Thermal	Thermal Desktop (5.2, 5.3,5.4)			
	Fluids	Fluent			
Calculators	Spreadsheet	MS Excel (2003, 2010)			
	Math-Based	MATLAB (R2007a, R2010)			
Embedded	FE Meshing	Simmetrix GeomSim Suite			
Toolkits	CAD/CAE Visualization	νтк			
	Web-based Viewing	Vcollab			
Ext Services	DOE/Optimization	Isight, ModeFrontier, ModelCenter			
	Robust Design	Ontonix OntoSpace			
	Vertical Apps	EASA			
Specialty/	Circuit Simulation	Proprietary code @ Sandia Nat. Labs			
In-House	Electromagnetics	Proprietary code @ Sandia Nat. Labs			
	Weapons Analysis	Proprietary inhouse codes			

COTS Adaptors- Supplied and Maintained by Comet

Planned for future releases

Comet templates called in background "batch mode"

Developed in the past; Not currently maintained



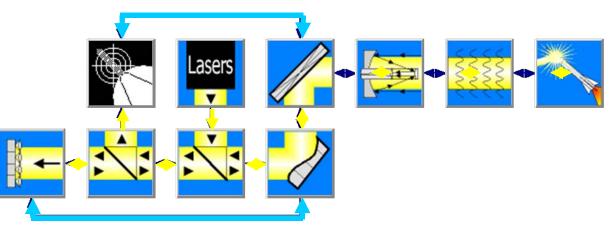
Customers & Applications

	Industry	Physics Domains	Application of Comet in Product Design/Development
CORPORATION	Aero & Defense	CAD/Structural/ Thermal/Optical	Classified satellite with Sandia Labs; Mid-wave Spectrometer Project
MIT Lincoln Laboratory	Aero & Defense	CAD/Structural/ Thermal/Optical	Classified military satellite program
Langley	Aero & Defense	CAD/Structural/ Thermal/Optical	CLARREO commercial satellite program
Kennedy	Aero & Defense	CAD/Thermal	Next generation space shuttle
Air Force Research Lab	Aero & Defense	CAD/Structural/ Thermal/Optical	Directed Energy program/High Energy Laser (HEL)
JOHN DEERE	Off-Highway	CAD/MBD Structural	Agriculture and forestry equipment and harvesters
GENERAL DYNAMICS Strength On Your Side*	Military Vehicles	Concept Eng/ In- House/MBD	Mobility performance of military tracked vehicles
	Off-Highway	CAD/Structural	Agricultural equipment in China
CNR	Off-Highway	CAD/Structural	High-speed rail locomotive in China
Whirlpool	Consumer	Excel-based Concept Design	Refrigerator cooling systems

Comet Statistics For This Project

- Analysis process set up by one engineer; run on one computer
 - Still requires input/review from discipline experts, doesn't eliminate this need
- Process and tagging take the most time to set up
 - < 1 week assuming dedicated team</p>
 - Start out with simplified analysis assumptions to verify process
 - Iterate between CAD tagging and process until desired results obtained
- Full STOP analysis runs in ≈ 30 minutes
- Re-running analysis with new geometry dependent on how fast CAD and tagging can be completed
 - Example: Adding tie rods, adding CPC entrance geometry, updating sequence file and rerunning completed in ≈ 8 hours

WaveTrain & Tempus

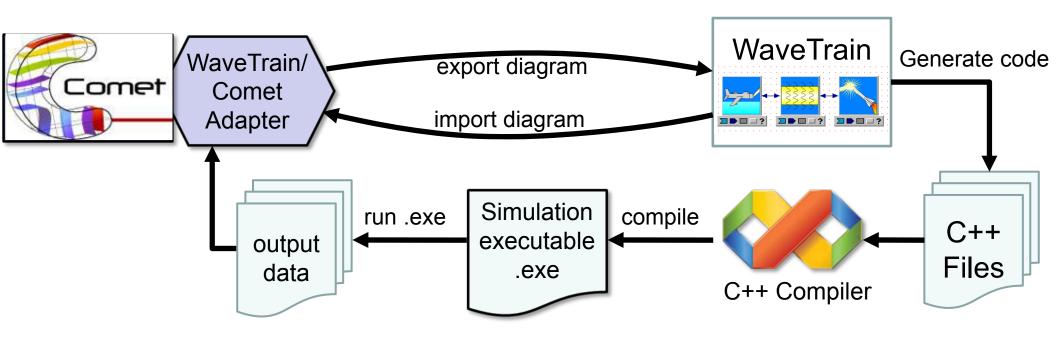

- Tempus: General-purpose systems engineering simulation within a user-friendly connect-the-blocks visual framework
 - Multidisciplinary, multi-fidelity modeling and simulation
 - Ability to create/use any arbitrary types of system components
 - Customize the behavior and interactions of each type of system component
 - Connect smaller systems to create larger systems; break larger systems into smaller systems. Cut and paste components and assemblies from one model to another.
 - Works the way engineers naturally think about systems

et Solutions, Inc.

WaveTrain: Wave Optics simulation toolkit within Tempus

- Toolbox of reusable components providing high fidelity modeling of optical systems and effects
- Used for modeling laser resonators, beam control systems, propagation through turbulent media, novel sensors and algorithms, and effects
- Used in combination with other tools (structures, thermal, CFD, etc.) to capture all the physical effects impacting optical system performance.

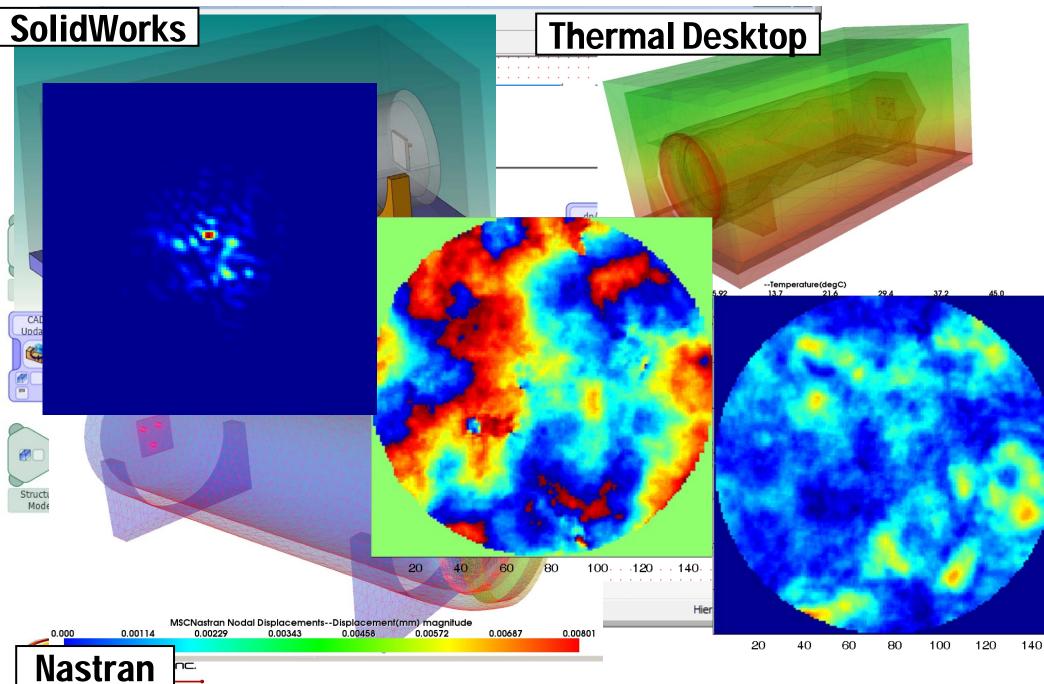
Why WaveTrain?



- First integration of a wave optics code into Comet.
- Especially stressing test case for Comet.
 WaveTrain is highly flexible and extensible.
- Identify "showstoppers".

WaveTrain: Physics Comet: Process + Data

Integrating WaveTrain into Comet



Major Tasks:

net Solutions, Inc.

- Import WaveTrain block diagrams into Comet data model.
- Export block diagrams from Comet to WaveTrain
- Invoke tool chain: (generate C++, compile C++, run executable)
- Import result data into Comet

Test Case: Comet + WaveTrain

Conclusions

- WaveTrain can be integrated into Comet.
- No "showstopper" problems encountered.
- Some challenges encountered and overcome.
 - Some API issues: first adaptor developed outside Comet Solutions.
 - Adaptors can take ~1-6 man-months depending on the complexity of the data.
- Next Steps:

et Solutions, Inc.

- Enhance WaveTrain adaptor for production use.
- Implement adaptors for other DE modeling tools.

Comet and WaveTrain/Tempus have the potential to be an effective MBE tool for the rapid design and validation of complex optical systems such as directed energy laser weapons.

Contact Information

- Steve Coy
 - Timelike Systems LLC
 - stephencoyjr@gmail.com
 - soon: <u>Steve.Coy@timelikesystems.com</u>
 - (505) 228-4283
- Malcolm Panthaki
 - Comet Solutions, Inc.
 - Malcolm.panthaki@cometsolutions.com
 - (505) 238-1555

olutions loc

Comet+WaveTrain Software Demonstration

